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Abstract

The phase-rotation FFT is a new form of the FFT that replaces data movement with multiplications by
constant phasor multipliers. The result is an FFT that is simple to pipeline.  This paper reports some
fundamental new improvements to the original phase-rotation FFT design, provides a complete description
of the algorithm directly in terms of the parallel pipeline, and describes a radix-2 implementation on the
iWarp computer system that balances computation and communication to run at the full-bandwidth of the
communications links, regardless of the input data set size.
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1. Introduction

The Fast Fourier Transform (FFT) is an important algorithm with many applications in signal processing
and scientitic computing. The Whelchel phase-rotation FFT [9] derives from the Pease constant-geometry
FFT [7], which itself derives from the original Cooley-Tukey FFT [4] expressed in terms of Kronecker
products.

The phase-rotation FFT of radix r is designed for a pipeline of r parallel duta channels. At each time
step, in each stage, the pipeline carries the next r data points, one from each channel, into a Discrete Fourier
Transform (DFT) kernel. Unlike earlier pipelined FFT's (5, 6], the phase-rotation FFT has the key property
that no data is switched across channels, except within the DFT kemel and at the input and output. The
phase-rotation approach extends easily to higher radices, reducing memory and latency while preserving
the high throughput and parallel shuffling simplicity of lower radix versions. The phase-rotation FFT has
also been extended to a vector-radix, multidimensional parallel-pipeline FFT with the same qualities of the
one-dimensional algorithm, and without transposes [10].

This paper describes the results of a project to implement the phase-rotation FFT on a parallel computer
system. There are three main results: First, the digit-reversing shuffle step in the original version of the
phase-rotation FFT [9] is a potential pipeline bottleneck because it requires communication between the data
channels. We describe a new version that corrects this problem by using a parallel-pipeline digit-reversing
step.

Second, aithough the structure of the phase-rotation FFT is extremely simple, we have learned from
experience that generating the appropriate twiddles and shuffle indices from the original matrix formula-
tion [9] is quite difficult, even for the designers of the algorithm! To try to help the implementer, we have
reformulated the phase-rotation FFT. We present a new set of recipes for generating the twiddles and shuttle
indices directly in terms of the parallel pipeline.

Finally, we describe mapping strategies for the phase-rotation FFT on the iWarp, a parallel computer
system developed by Intel and Carnegie Mellon (1, 2]. We describ2 a tine-grained approach for an .V -point
radix-2 phase-rotation FFT that balances computation and communication to run at the full 40 Mbytes/sec
rate of the 1Warp physical links, regardless of the size of the input data sets.

Section 2 introduces the phase-rotation concept. Section 3 formally defines the improved FFT algorithm.
Section 4 gives the recipes for generating the twiddles and shuffle indices in terms of the parallel pipeline.
Finally, Section 5 describes the full-bandwidth implementation on i Warp.

2. The basic idea

This section introduces the concept of the phase-rotation FFT. Starting with the Pease constant-geometry
FFT, we informally derive the pipelined phase-rotation FFT, identifying the key insights along the way.




2.1. Constant-geometry FFT

Figure 1(a) shows the flowgraph for a radix-r .V -point decimation-in-frequency (DIF) constant-geometry
FFT, with » = 2and .V = r" = 8. There are n stages. Each stage contains .V /r kernels. Each kernel is an
operator that performs an r-point DFT. For radix 2. each kernel inputs two complex numbers and outputs
two complex numbers. (For simplicity, twiddles are not explicitly shown in the lowgraph.)

Each stage in the constant-geometry FFT performs an identical perfect stride-by-s shuffle of its data
vector, where s = .V/r. If the data vector is regarded as an s x r array, stored in column-major order.
then the perfect shuffle simply transposes it into an r x s array. For example, the following transpose is a
stride-by-4 perfect shuffle, for .V = 8 points and radix r = 2:
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The data items 1n example above, labeled by their indices in the original column vector, are regarded as
equivalent to a 4 x 2 array composed by a stride-by-4 unstacking of the 8-point column vector. After the
transpose, the 2 x 4 array is equivalent to a new 8-point column vector composed by a stride-by-2 stacking.
As we shall see, this transpose creates difficulties when we try to pipeline the constant-geometry FFT. And
it is precisely these difficulties that the phase-rotation FFT addresses.

2.2. Pipelining the FFT

Each stage of the constant-geometry FFT can be computed on a single processor by pipelining the data.
For example, Figure 1(b) shows the pipeline for a single stage with radix r = 2. The pipeline consists
of a sequence of operators connected by pipeline segments. Each pipeline segment consists of r parallel
channels. Each channel carries a stream of N'/r data points, which are labeled in this example by their
indices from the original column vectors in Figure 1(a). For each pipeline segment, the » data points in the
same position in each stream are known as an r-frame, or simply, a frame. For example. in Figure 1(b), the
first frame in the pipeline segment between S and F is (0,4), the second frame is (1.3). and so on.

At each time step, the r twiddle operators (T) collectively read a frame (one complex number per
operator), perform an element-wise complex multiplication, and write the resulting frame. Notice that each
stream is operated on independently. Similarly, the kernel operator (F) reads a frame. computes the radix-r
kernel, and writes the resulting frame. In this case, the streams are not independent; each data item in the
output frame is a function of every data point in the input frame.

The twiddle and kernel operators pipeline nicely because during each time step they independently read
and write a single number. However, the pipelined shuffle operator (S) is less well behaved. To produce
one output frame, the shuffle operator must read and store the r data points from cach stream. Thus, S
requires r memory cycles to produce each frame. (Notice that S transposes the data directly into an r -
pipciine segment; cven starting with data already in an » <~ pipchine, S sull pertorms “row-to-coiumn™
motions.) This is an example of the memorv-hbank conflict discussed in |8, pp.31-32]. The conflict is ¢clear
in Figure 1(b). To assemble its first output frame, S must read both 0 and 4 from the upper stream to s left,
Then it must read | and 5 from the lower stream, and so on.
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Figure 1: Derivation of the phase-rotation FFT. ) Imtial con-
stant-geometry FFT. (b) Pipelined constant geometry FFT. (¢) Pipelined FFT

based on cyclic rotations. (d) Pipelined phase-rotation FFT.
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Figure 2: Replacing the perfect shuffle with three simpler shuffles.

We would like to replace the troublesome perfect shuftle operation with a parallel-pipeline shuffle, where
each stream is read and written independently and in parailel. The next section describes the insights that
make this possible.

2.3. The phase-rotation concept

This section describes how to replace the perfect shuffle by a parallel-pipeline shuffle, so that we can access
the data streams in parallel. The basic idea is to rotate the data within frames, and then compensate for these
motions by phase rotations of the twiddle factors.

We begin with a “‘detour” around the perfect shuffle. That is, we find a sequence of three simpler shuftics
that is equivalent to the perfect shuffle. This idea is shown graphically in Figure 2 for an \V-point radix-2
example. Each radix-2 pipeline segment is represented as matrix. Each row in the matrix corresponds to a
stream, and each column corresponds to a frame. Frames (columns) are arranged left-to-right in reverse-time
order in the matrix.

The first step in Figure 2 is a set of cyclic rotations, called Cg,,., which rotates each frame. These
rotations are frame-wise in the sense that only data points contained in the same frame are rotated across
the streams. Notice that in the radix-2 case, half of the rotations leave the corresponding frame unchanged.
The next step is a parallel-pipeline shuffle S, which permutes the data in each stream. Notice that no data
points need to be transferred between streams in this step. The last step is another set of frame-wise cyclic
rotations, called Cj,,;, which leave the data in the same order that the perfect shuffle would. Note that
Csiow and Cy, 5, change the number of rotations per frame at different paces, one slow and one fast. These
varying rates are difficult to see in the radix-2 case, but are much more apparent in the higher-radix cases.

If we apply the idea in Figure 2) to each stage of the pipelined FFT in Figure 1(b), replacing each perfect
shuffle with three simpler shuffles, we get a pipelined FFT based on cyclic rotations, which is shown in
Figure 1(c).

The kind of basic frame-wise rotations in Figure 1(c) that is applied at slow-varving, and then fast-
varying rates, is represented in general by the » x r cyclic (circular) shift permutation matrix C,. made by
permuting the rows of the identity matrix down by one row, and moving the bottom row up to the top. For
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The key insight of the phase-rotation FFT is that the cyclic shift theorem for the DFT can be applied to the
cyclic shift operators in Figure 1(c). In matrix form, the cyclic shift theorem for a DFT is the relation

F.C,=D,F.. (1

where D, = diag(1,w.>.....«" ") is a set of twiddles, and the DFT matrix of size r is

1 AN
F. = —ﬁ(wjk)j.kl_—.O‘
where w = e~ r . For the pipelined FFT, (1) says that phasor multipliers after a DFT kernel give the
same effect as physical data rotations before the DFT kernel. Likewise, physical rotations after the kernel
are equivalent to phasor multipliers before it. The meaning of (1) is shown graphically in Figure 3 for a
pipelined radix-2 kemel. The shift theorem implies that the data rotations in Figure 1{c) can be replaced
by constant phasor multipliers. These phasors can then be absorbed by the twiddle factors on either side of
the kernel, leaving only a parallel-pipeline shuffle. The result is the pipelined phase-rotation FFT, which is
shown in Figure 1(d). This completes the informal derivation of the phase-rotation FFT.

The structure of the phase-rotation FFT in Figure {(d) is quite similar to the original pipelined FFT in
Figure 1(b). The twiddle operators (D’) are identical to the original twiddle operators (T7), except now
the twiddles incorporate the original twiddles, phasor muitipliers for the C .5, operator from the previous
stage, and phasor multipliers for the C g, operator from the next stage. The kernel operators are identical
as well. The important difference is that the troublesome perfect shutfle operator has now been replaced by
a parailel-pipeline shuffle that requires no communication across the streams.

There are several other important properties of the phase-rotation FFT. First, there are no additional
multiplications or additions, compared to the original pipelined FFT in Figure l(a). Sccond. the only
internal communication across streams occurs at the kernel, and this communication is constrained, in that
only data points within a single frame need to be switched across channels, and the switching is tixed for
all frames.

3. Improved phase-rotation FFT

In this section we give a formal definition of an improved version of the original phase-rotation FFT
described in [9]. The new version replaces the digit-reversing permutation in the original phase-rotation
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FFT with a parallel-pipeline shuffle, followed by a frame-wise cyclic rotation. The advantage of this new
approach is that during the digit-reversing step at the end, all communication between streams is limited to
data points within a single frame.

Forradix rand .V = r” points(n > 1), the {-dimensional phase-rotation FFT is a matrix fuctorization of
the .V-point DFT matrix F y. Starting with the Pease constant-geometry factorization, we replace its perfect
shuffles S by S = Cf,,_stgcslo,u Similarly, at the left end we replace the radix-r index-digit-reversing
permutation Q = Q. of .V data points by Q = CcT.. QC;ML, where Q is another parallel-pipeline
shuffle that will be defined formally in Section 4. The phase-rotaticn FFT is then defined by:

n vigorous
Fv = Q- H (FST)) : algebraic
j=! shuftling
T n
= slow fast H (FSD’> alJYL" (2)
Let s = N/r as before, and ' = V/r®. F is a direct (tensor, Kronecker) product I, - F. =
diag(F,.F,.....F,). We interpret this as a kernel DFT F. operating on s successive frames of r points

placed in the pipeline. For j = 1 : n, the other parts of (2) are defined by

r—1

Cslaw = @ (Ir’ o Ci)
k=0
rEB CT)")

—1
Cj'ast = I :( (
k=0

27
o = €Irpl ———
-5 ] iy

. -1
D, = diag(l.w.1. ] )
, 3 -
D,-]-H = ([l([g(l‘w'_]+].w'J+l.....w;+| )
r=-1
_ - Tk
Dsluw - EB(IT' = D; )
k=0
' - T
slow  — les!DbluiL Cf" st
14
slow — S Dslm

Di,, = Lv= (@Dr_k)

!/ —
fast Csluu Df,gtcvluu-

F, - (@ D>

,-1]+|P
T, = § rT_,SJ
T) = Cu.T,Cl.
D, = (s D,,W:> D!,
D) = slm,,T D,,,, .oJ=2:n-1
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DI — " T/” - DII . (3)

n slow sl

The direct sums are of the form
r—1
P Ax = diag(Ag. Ay . AL,
k=0

and AT denotes the transpose of A. See [10] for more on the basic definitions and relations used to derive
(2), as well as the generalization to higher dimension FFT's.

Note that the stages in (2) are counted in reverse time order by the index ;. This is in keeping with the
fact that (2) is a decimation-in-frequency (DIF) version of the FFT. The transpose of (2}, with the product
I__, is the decimation-in-time (DIT) vcrsion of the phase-rotation FFT.

j=ns

A Cy,.,. shuffle and its inverse remain at the input and output ends of the pipeline, respectively. As
we have seen, Cy,, 1S @ cdmplete!y frame-wise rotation. It rotates (commutates) the data within each
successive frame (column r-vector) of the r x s pipeline segment for a stage. There 1s also an implicit
frame-wise broadcast within each FFT kernel engine, when an r-point DFT is somehow computed. So in
the phase-rotation FFT, data motion is all parallel, except for frame-wise motions at VO and at every FFT
kernel. The simplicity of the phase-rotation FFT is that no data point ever moves both down and across the
ptpeline in one time-step.

4. Pipeline recipes

While the structure of the pipelined phase-rotation FFT is extremely simple, experience has taught us
that generating the appropriate twiddles and shuffle indices from the matrix formulations of (2) and (3) is
difficult and confusing. To address this problem, we have developed a collection of recipes for generating
the phase-rotation twiddles and shuffle indices off-line. The recipes are defined for any 1D phase-rotation
FFT of .V = r" points. Following {8], they are written in a MATLAB-like format.

As we saw in (2), the pipelined phase-rotation FFT performs a typical “twiddle, shuffle. kernel™ cycle
at each stage. Only the twiddles vary from stage to stage, and there is a digit-reversing shuffle equivalent
at the end. To implement this FFT using parallel r x s pipeline segments (one per stage). we insert the
.¥-vector of input data x into the pipeline as an r » s array .X: the first r points of x go into the first frame
(column) .Y, the second r points go into the second frame, and so on. We must also have a shuffle address
and a twiddle factor ready for each point in the pipeline. In other words, we would like to till one » « -
copy - of the pipeline segment with addresses, and another copy D with twiddles.

Then the processors in each stage of the pipeline will know what to do at each time-step 1 = O:s - 1.
Using the current frame of addresses, they will fetch the current r-frame of data X'(O0:r — 1. 4(Or — 1,430
and the current r-frame of twiddles DiG:r — 1. A(Q:r — 1.t)) (pointwise in parallel), multiply these twe
frames pointwise, then do an r-point DFT F, of the twiddled data frame. That is how each stage F§D; I8
implemented in the parallel pipeline.

The twiddle and shuffle recipes in this section are “in place” in the sense that they work in.ide the
T x s pipeline segments that will contain the desired addresses and twiddles. They are not “in place™ in the
usual sense, as we will freely use an input ~nd an output copy of a pipeline segment. This approach uvoids
constructing and operating with large .V x .V matrices (cach containing only .V non-zero clements). Each
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parallel-pipeline function recipe is given a name similar to that of the .V x NV matrix factor in the FFT (2)
that it effectively implements.

4.1. Shuffle recipes

As a convention, pipeline addresses (pipeline array row and column indices) run O0:r — | and O:s — 1,
respectively. To do parallel-pipeline shuffles, we only need the horizontal (column) addresses. since the
datainside eack pipe will only jump within that stream (row). The cross-stream shuffles, Cslow and Cfast. are
implemented using =, a cyclic rotation of a frame (a vertical slice of the paralle! pipeline) that has the effect

of y, = C.x,. 7, takes a column r-vector X, = (Lo. &y L2eendroy)] — Yo = (0e_y gk

function } = Cslow(.Y)

col =0
fork=1:r
forj=1:/r
Y(:.col) = rf(,\'(:.col))
col = col + 1
end
end

function Y = Cfast( .X)

col =0
fory=1:r
fork=1:7r
Y(:..col) = =¥ X(:.col))
col = col + 1
end
end

The inverses of Cslow and Cfast are formed by simply reversing 7. Next, we detine some pertect shutties.

function ¥ = S(.Y') !stride by s
col =0
forrow =0:r -1
forkl=0:r:s-r
2=kl +r-1
Yirow k1 :k2) = X(:.col)
col = col + 1
end
enc

function ¥ =S~'(X') ‘'stride by r
col =0
forrom=0:r~-1




forkAl=0:r:58—r

A2 =kl +r -1
Y(i.col) = X{row. .kl :k2)
col = col + 1
end
end

= =-1 =
To implement the parallel-pipeline shuffles, S, S, and Q, we will use :he parallel-pipeline addresses 1,
which are computed by the following function:

function - =S _addresses( r. 5}
a=(0.r. ..(r—1rmT
col =0
forj=1:/,
fork=1:r
Avirol)y = a
col = rol + 1
a=nr~.(a)
end
a=a+1,
end

Looking closely, one can see Cfast™' at work producing the addresses -1 in the last function. The addresses
- can also be generated by loading a pipeline segment with simple r < r address blocks B... and then
applying Cfast™! to the pipeline segment. The first block to load is B, = diag{0:#":s = 1)+ 1,,, where 1.
is the r < r matrix ~hose entries are all 1's. The next block is always 3., = B,, + 1,., until the pipeline
segment contains r’ blocks and is full.

function ¥ = S(.\)
A = S_addresses( r. s)
forrow =0:r -1
Yirow. .y = X{row, N row.:))
end

=-1
function} =S (.\)

A =S addresses(r. )
(A1 = son(.))
forrou =0:r ~1
Y(row.:: = X(row I{row,:))
end

In the above functions, sort(.l) sorts each row of an array .1 in uscending order. It returns the row-sorted
array i1 and the corresponding array of addresses I where the successive row elements were found in 1.

= =1
After we have sorted the addresses /1 for S, / has the addresses for S .

9
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The pipeline addresses for 5 are obtained by block-perfect shuffles (along the length of the pipeline) of
the addresses for S:

funciion Y = 6( X.n)
A = S_addresses(r. s)

iftn>2
forns =(rn—2):-1:1
stride = r*s
block = pn—
col2 =0
fork; = 1 : stride
coll = (ky — 1) * block
fork=1:r
for j = 1: block
B(:,col2) = A(:,coll)
coll = coll + 1
col2 = col2 + |
end
coll = coll + (stride — 1) * block
end
end
A = B
end
end

"% ! block length

forrow=0:r-1
Y(row,:) = X(row, A(row,:))
end

4.2, Twiddle rccipes

Ev:ry twiddle matrix D is diagonal, so it operates on a data vector as a point-to-point vector multiply.
Gi-en some permutation matrix P, a new twiddle matrix PDP7 is equivalent to a rediagonalizing of the
vector shuffle of the diagonal of D, that is, PDPT = diag( P+diag(D)). (This is a MATLAB notation: diag()
put . the diagonal of a matrix in a vector, and puts a vector in the diagonal of a matrix.) Since we want
to -erform shuffles within pipeline arrays, we reshape the twiddle .V-vector diag(D) as an r x ~ pipeline
ar, .y D, just as we originally reshaped the data vector. Then we shuffle the pipelined twiddles, to effect the
equ.'valent of the vector shuffle-P+diag(D). So we interpret the PDP7 operator as an in-pipeline shuffle
of ihe pipelined twiddles D, which are then in position to operate on the pipelined data .Y directly by point-
to-pyint multiplication, ¥ = D. * X. (As mentioned, the data will actually be twiddled frame-by-frame in
the pipelined implementation.)

We will interpret the twiddles expressed in (3) this way. Each twiddle function below returnsin.r x ~
array D of twiddle factors (the actual twiddling of the data is not included):

10



function 1y, = Dslow_twiddles(r, s)
wj = exp(=2xi/r)
t=0
forj=0:(r-1)
fork = 0:(7"— I)
Ditow(:,t) = (1‘@75“)31‘-“._@(:_;”)1.
t=1+1
end
end

function Dy, , = Dfast.twiddles(r, s)
wj = exp(—=27i/r)
t=0
fork=0:(r"-1)
forj=0:{(r—-1)
Diasi(:yt) = (l,wl.wsj,....wir_‘)j)T
t=t+1
end
end

The inverses of Dy, and Dy, are just their complex conjugates, and are generated simply by reptacing
w; by wj". For stages j = 1:n (counted down from n), we generate pipelined twiddles 7; by

function 7 = T_twiddles(r, 3, j)
wj = exp(2mi/ri+!)

Wi =Wl
fork=0:(r—1) ! direct sum loop
Ly = Jo.pi~}

forp=0:(r-1)
Ti(p.t1) = w?

end
L =t + 1'
ta= 1ty + i}

fort = t; : ta ! fill next column from last
Tit: ) =W T, = 1)
end
end

ifj<n
fa =1t
fork = 0: (N/rith)
’ l|=l2
lz:k'r"’
{=0
forlg =1 : 41

1



Dty = "1"J(:. £} ! copy columns
C= ]
end ~— R
end

end

The rest of the twiddle arrays can now be defined in terms of the shuffles:

e T ..

Dl =STHUDZ)

’,‘).:'Ilmu = Cslow( D;Iow)

Dy =Cslow( D7) .
I, =S~4T))

[ =Cslow(T})

P -1 g -1
D'=5( D.slow)‘ * Il, ¥ Djrzst
ift <j<n

Dy =D+ DY
end
[)flz l)::,l()lll

5. Implementation issues

In this scction we describe issues that arise when the phase-rotation FFT is implemented on a real parallel
system. In particular, we describe implementation approaches for the radix-2 FFT on the iWarp system.
The main result is a scalable implementation of the pipelined phase-rotation FFT that runs at the full 40
Mbytes/second rate of the iWarp physical links.

5.1. iWarp

The iWarp is a private-memory multicomputer developed jointly by Intel and Carnegie Mellon [1, 2]. iWarp
systems are 2-dimensional tori of iWarp nodes, ranging in size from 4 to 1024 nodes. Each node consists of
an arp component, up to 16 Mbytes of off-chip local memory, and a set of 8 unidirectional communication
lin/ ~ that physically connect the node to four neighboring noaes.

“T'he iWarp component is a VLSI chip that contains a processing agent and a communication agent. The
processing agent is a general-purpose load-store microprocessor, centered around a 128 x 32-bigregister
file, that runs at a maximum rate of 20 MFLOPs, The local memory is accessed at a rate of 160 Mbytes/sec.
Each link runs at 40 Mbytes/sec, for a maximum aggregate bandwidth of 3200 Mbytes/sec per node.

The key feature of the iWarp is its communication system, which is summarized in Figure 4. Each
communication agent contains a set of 20 hardware FIFO gueunes. Each queue can hold up to 8 32-bit
wor ‘s, iV/arp nodes communicate with other nodes using unidirectional point-to-point structures called

12
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Figure 4: iVWarp communication concepts.

patnways. Each pathway is a sequence of queues. Pathways can be created and destroyed dynamically at

runiime. figure 4 shows a pair of such pathways.

=)

Data traveling along a pathway passes from queue to queue automaticallv, without disturbing the
computations on intermediate nodes. TFor example, in Figure 4, data items traveling over the pair of
pathways do not disturb the computation on node 1. The latency from queue to queue is small, ranging
from 100-300 nanoseconds.

Multiple pathways can share the same link. For example, in Figure 4, two pathways share the link from
node 1 to node 2. In this case, the pathways share the link bandwidth in a round-robin fashion, one word at
atime. If only one pathway is sending data over a link, then it gets the entire link bandwidth. If multiple
pathways are sending data over a link, then the link can be utilized at the full 40 NMbytes/see, and cach
pathway is guaranteed a proportional fraction of the bandwidth.

User programs can directly access the queues, one word at a time, by reading and writing special registers
in the register file called gates. To an iWarp instruction, a gate is just another register in the register file. The
important point is that a program can read or write a word in a queue with the latency of a register access.
A single instruction can read and write up to 4 words from queues, with a maximum aggregate bandwidth
of 160 Mbytes/sec. Gates can be accessed directly from user-level C programs,

5.2. lapping strategies on iWarp

The problem is to develop a mapping of the flowgraph in Figure 1(d) to an iWarp array. The simplest
mapping strategy is to assign each flowgraph node to a unique processor node of a linear arfiy, route
the flowgrapsh arcs through this array, and then embed the resulting linear array in the iWarp torus, This
approach, called the PHASES mapping because it uses 5 iWarp nodes for cach FFT stage, is shown in

Figure 5(a).

Each iWarp node in PHASES exccutes a small node program that implements its flowgraph operator.
Each twiddle node ( D') repeatedly reads a complex number from its input pathway (via the gates), multiplies
it by he appropriate twiddle (precomputed off-line using the recipes in Section 4.2), and sends the result to
its outpnt pathway (again, via the gates). Each shuffle operator (:5) repeatedly reads a complex data item
from it< input pathway, stores it in memory, and uses the appropriate shuffle index (again precomputed
off-linc using the recipes in Section 4.1) to send an appropriate double-buffered data point to the output
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Figure 3: Strategics for mapping one stage of the FFT onto a linear array.
(a) PHASES mapping. (b PHASE3 mapping.

pathway. The kernel node ( F) repeatedly reads two complex numbers from its input pathways, performs
the radix-2 DFT kernel operation, and outputs two complex numbers to its output pathways.

Another approach, the PHASE3 mapping, combines the twiddle and shuffle operators on a single node,
as shown in Figure 5(b), so that each stage requires 3 nodes instead of 5 nodes. As we shall see, the
communication and computation throughputs of the two mappings are identical. The advantage of the
PHASE3 mapping is that it is more node-efficient, requiring fewer nodes per stage than the PHASES
mapping. The advantage of the PHASES mapping is its simplicity. Each node is assigned exactly one
operator from the flowgraph.

Figure 6 shows a working implementation of a 16K-point radix-2 phase-rotation FFT on a 64-node iWarp
array at Carnegie Mellon. The large squares are iWarp nodes, labeled with the corresponding operator and
stage number. The small squares are queues. The arrows are iWarp pathways. The implementation is based
on the PHASE3 mapping from Figure 5(b). Each of the 14 FFT §fages uses 3 nodes, with an additional 3
nodes for the parallel-pipeline digit-reversing step at the end.

5.3. Performance

V/hile the details are beyond the scope of this paper, each iteration of each node program in the PHASE3
and PHASES5 mappings runs in at most 8 clocks. At the peak rate of 40) Mbytes/sec, each link can produce
and consume a 32-bit floating-point number every 2 clocks. Further, each data point in the pipeline is a
complex number consisting of a pair of 32-bit floating-point words. As a result, each pathway requires
exastly half of the available link bandwidth. Since each link is shared by two pathways, and since the
iWarp communication agent gives each pathway an equal share of the link bandwidth, without disturbing
the computations on intermediate nodes, each link is fully utilized. The result is a radix-2 FFT that runs
at the full 40 Mbytes/sec rate of an iWarp link, regardless of the number of points in the FFT! Since each
sample consists of 8 bytes, the FFT runs at a constant rate of 5 Msamples/sec. Given a sufficient number of
nodes, the iWarp phase-rotation FFT's will produce arbitrarily large FFT's at this rate. Perhaps even more
important. the performance is the same on smaller FFT's.

Another way to characterize the performance of the PHASE3 and PHASES mappings is by its com-

putational thrcughput, expressed as millions of floating-point opcrations per second (MFLOPS). However,
there is a subtlety involved in using MFLOPS as a performance measure. The iWarp phase-rotation FFT
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Figure 6: 16K-point pipelined phase-rotation FFT running at 4G
Mbytes/sec (350 MFLOPS) on iWarp

performs performs {6 floating-point operations per iteration per stage (2 adds and 4 multiplies by each
twiddle operator, and 4 adds by the kernel operator). But the standard formula for computing FFT MFLOPS
1s 5.V log .V floating-point operations per N-point FFT (3], which implies 10 floating-point operations per
iteration per stage. Therefore, in order to do fair comparisons with other FFT algorithms, we must compute
the phase rotation performance using the standard of 10 floating-point operations per iteration per stage,
even though the phase-rotation FFT is actually performing 16 floating-point operations per iteration per
stage.

Since each node program executes its computation in at most 8 clocks, and since each clock is 30
nanoseconds, each stage of the iWarp phase-rotation FFT runs at a rate of

10 fp operations 1 clock y I x 10° nanoseconds

=25M
8 clocks 50 nanoseconds | second 5 MFLOPS

for a total performance over all of the log.V stages of 25log.V MFLOPS. For example, the 16K-point
FFT in Figure 6 achieves a measured performance of 25 x 14 = 350 MFLOPS (single precision) on
iWarp. As a point of comparison, a highly optimized 16K-point FFT has been measured at 237 MFLOPS
(double precision) on a single-processor Cray Y-MP (3, p.114]. The numbers are not directly comparable
because of the different floating-point precisions, but they do suggest that the absolute performance of the
" phase-rotation FFT on iWarp is quite good.

6. Concluding remarks

We have described an improved version of the Whelchel pipelined phase-rotation FFT, developed recipes
for generating the appropriate twiddles and shuffle indices off-line and directly in terms of the parallel
pipeline, outlined mapping approaches for the radix-2 case on pthe iWarp parallel computer, and presented
measured performance results of an implementation on iWarp.

The improvement on the original phase-rotation FFT is significant in that it eliminates a potential pipeline
bottleneck during the digit reversing step at the end. The twiddie and shuffle recipes should be helptul
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to the programmer who wants to implement the pipelined phase rotation FFT. The iWarp implementation
validates a simple and realistic approach for building scalable pipelined FFT's on a programmable parallel
system. Further, the implementation demonstrates that, given a balanced parallel computer architecture
with word-level access to the communication links, it is possible to build FFT's that run at the full link
bandwidth of the links, even when the FFT's are relatively small.
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